Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control

نویسندگان

  • Paul Watts
  • Maurice O'Connor
  • Jirí Vala
چکیده

We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4) in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage

We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...

متن کامل

Different classes of quantum gates entanglers

We construct quantum gates entanglers for different classes of multipartite states. In particular we construct entangler operators for W and GHZ classes of multipartite states based on the construction of the concurrence classes. We also in detail discuss these two classes of the quantum gates entanglers for three-partite states.

متن کامل

Matchgate and space-bounded quantum computations are equivalent

Matchgates are an especially multiflorous class of two-qubit nearest neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions, and one-dimensional spin chains. We show that the computational power of circuits of matchgates is equivalent to that of space-bounded quantum computation with unita...

متن کامل

On group theory for quantum gates and quantum coherence

Finite group extensions offer a natural language to quantum computing. In a nutshell, one roughly describes the action of a quantum computer as consisting of two finite groups of gates: error gates from the general Pauli group P and stabilizing gates within an extension group C. In this paper one explores the nice adequacy between group theoretical concepts such as commutators, normal subgroups...

متن کامل

Group theory for quantum gates and quantum coherence

Finite group extensions offer a natural language to quantum computing. In a nutshell, one roughly describes the action of a quantum computer as consisting of two finite groups of gates: error gates from the general Pauli group P and stabilizing gates within an extension group C. In this communication we explore the nice adequacy between group theoretical concepts such as commutators, normal sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013